The following result is used in the proof of Lemma 10.3.8 of [1].
Proposition 1 Let D^{\prime} denote the full subcategory of the derived category D of W-modules such that $H^{i}\left(C \otimes^{L} k\right)=0$ for $i<0$. Then on D^{\prime} there is a natural transformation $L \eta \rightarrow$ id extending the usual construction on the set of complexes with $C^{i}=0$ for $i<0$.

Proof: Since W has finite homological dimension, every object C of D
is isomorphic to an object whose terms are free. Thus we may restrict our attention to such objects.

Lemma 2 Let C be a complex of torsion-free W-modules. Then $H^{i}(C \otimes k)$ vanishes for all $i<0$ if and only if multiplication by p is bijective on $H^{i}(C)$ for all $i<0$ and injective on $H^{0}(C)$.

Proof: The exact sequence $0 \rightarrow C \xrightarrow{p} C \longrightarrow C \otimes k \rightarrow 0$ yields an exact sequence:

$$
\cdots \rightarrow H^{i-1}(C \otimes k) \longrightarrow H^{i}(C) \xrightarrow{p} H^{i}(C) \rightarrow H^{i}(C \otimes k) \longrightarrow \cdots
$$

Let C be a complex satisfying the conditions of the lemma. By definition, ηC is the subcomplex of $\mathbf{Q} \otimes C$ which in degree i is $\left\{x \in p^{i} C^{i}: d x \in\right.$ $\left.p^{i+1} C^{i+1}\right\}$. Let $\eta^{\prime} C:=C \cap \eta C$, i.e., the subcomplex of ηC which is C^{i} in degree $i<0$ and is ηC in degree $i \geq 0$. We have arrows: $\eta^{\prime} C \rightarrow C$ and $\eta^{\prime} C \rightarrow \eta C$. Recall from [1, 7.2.1] that for each i, there is a natural isomorphism $H^{i}(C) /[p] \rightarrow H^{i}(\eta C)$ for all i. Thus if C satisfies the conditions of the lemma, so does ηC. Note also that the map $H^{i}\left(\eta^{\prime} C\right) \rightarrow H^{i}(C)$ is an isomorphism for $i<0$, so it still true that multiplication by p is bijective on $H^{i}\left(\eta^{\prime} C\right)$ for $i<0$. Furthermore, $H^{0}\left(\eta^{\prime} C\right) \rightarrow H^{0}(C)$ is an isomorphism, so $H^{0}\left(\eta^{\prime} C\right)$ is also torsion free.

To obtain our morphism in the derived category, is enough to prove that if C satisfies the hypothesis of the lemma, then $\eta^{\prime} C \rightarrow \eta C$ is a quasiisomorphism. In degree 0 this is true because of the commutative diagram:

and the fact that $H^{0}(C)$ is torsion free. To prove it in negative degrees, we may argue degree by degree, and so we can assume that C is bounded below. Then for $n \gg 0$, multiplication by p^{n} on ηC factors through $\eta^{\prime} C$, and we get a diagram

Since the slanted maps are isomorphisms, so are the horizontal ones.

References

[1] B. Bhatt, J. Lurie, and A. Matthew. Revisiting the de Rham Witt complex. arXiv:1804.05501v1.

