The following result is used in the proof of Lemma 10.3.8 of [1].

Proposition 1 Let D' denote the full subcategory of the derived category D of W-modules such that $H^i(C \otimes^L k) = 0$ for i < 0. Then on D' there is a natural transformation $L\eta \rightarrow id$ extending the usual construction on the set of complexes with $C^i = 0$ for i < 0.

Proof: Since W has finite homological dimension, every object C of D

is isomorphic to an object whose terms are free. Thus we may restrict our attention to such objects.

Lemma 2 Let C be a complex of torsion-free W-modules. Then $H^i(C \otimes k)$ vanishes for all i < 0 if and only if multiplication by p is bijective on $H^i(C)$ for all i < 0 and injective on $H^0(C)$.

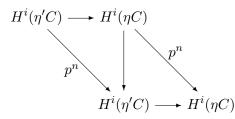
Proof: The exact sequence $0 \to C \xrightarrow{p} C \longrightarrow C \otimes k \to 0$ yields an exact sequence:

$$\cdots \to H^{i-1}(C \otimes k) \longrightarrow H^i(C) \xrightarrow{p} H^i(C) \to H^i(C \otimes k) \longrightarrow \cdots$$

Let C be a complex satisfying the conditions of the lemma. By definition, ηC is the subcomplex of $\mathbf{Q} \otimes C$ which in degree i is $\{x \in p^i C^i : dx \in p^{i+1}C^{i+1}\}$. Let $\eta'C := C \cap \eta C$, *i.e.*, the subcomplex of ηC which is C^i in degree i < 0 and is ηC in degree $i \geq 0$. We have arrows: $\eta'C \to C$ and $\eta'C \to \eta C$. Recall from [1, 7.2.1] that for each i, there is a natural isomorphism $H^i(C)/[p] \to H^i(\eta C)$ for all i. Thus if C satisfies the conditions of the lemma, so does ηC . Note also that the map $H^i(\eta'C) \to H^i(C)$ is an isomorphism for i < 0, so it still true that multiplication by p is bijective on $H^i(\eta'C)$ for i < 0. Furthermore, $H^0(\eta'C) \to H^0(C)$ is an isomorphism, so $H^0(\eta'C)$ is also torsion free.

To obtain our morphism in the derived category, is enough to prove that if C satisfies the hypothesis of the lemma, then $\eta' C \to \eta C$ is a quasiisomorphism. In degree 0 this is true because of the commutative diagram:

and the fact that $H^0(C)$ is torsion free. To prove it in negative degrees, we may argue degree by degree, and so we can assume that C is bounded below. Then for n >> 0, multiplication by p^n on ηC factors through $\eta' C$, and we get a diagram



Since the slanted maps are isomorphisms, so are the horizontal ones. \Box

References

[1] B. Bhatt, J. Lurie, and A. Matthew. Revisiting the de Rham Witt complex. arXiv:1804.05501v1.